An Optical-Scale Period Undulator for Hard X-Ray Production from Compact Devices?

Gil Travish¹, Zach Hoyer¹, Huarong Gong², and Rodney Yoder³

¹UCLA Department of Physics & Astronomy ²College of Physical Electronics, UESTC, Chengdu, Sichuan, China ³Manhattanville College Department of Physics

> UCLA PBPL

A laser-powered dielectric accelerator can provide relativistic electron beams and x-rays in a chip-scale device

Optical structures naturally have sub-fs time structures and favor high rep. rate operation

Undulator technology has significant impact on the FEL design.

	PM	Micro/Pulsed	RF	Laser	Opt. Struct.
Period	>1 cm	0.1 - 1 mm	0.1-1 cm	1-20µm	1-100+µm
Parameter	1-10	<1	~1	~1	<0.01
Gap	5 mm	1 mm	1+ cm	open	1 µm
Status	Mature	some SC work	stalled	ICS like	paper

Ultra-short period undulators

This isn't ICS where the laser spot and Gouy phase shift dominate

For free space, the "uniform" laser propagation length is set by the Rayleigh range

$$L_{R} = 2Z_{R} = 2\frac{\pi W_{0}^{2}}{\lambda}$$

In general, we take

$$L_{R} = L_{L}$$

Our baseline parameters: $\tau_L = 10 \text{ ps} \Rightarrow L_L = 3 \text{ mm}$ $\lambda = 1 \mu \text{m}$ $\varepsilon_n = 1 \mu \text{m}$ $E_b = 30 \text{ MeV}$

For our example case:

 $2W_0 \approx 40 \ \mu m$

So, the laser beam limits the spot size here: $\varepsilon = \varepsilon_n / \gamma \ll \lambda$

Here the field is guided and forms a uniform, long undulator. FEL action is used.

RF & Laser based undulators offer advantages but demand very high peak power and are under-developed

Good:

large aperture high fields smooth bore (wakefields) tunable

RF waveguide undulators can work

Beating can create larger periods

Bad:

betatron motion power loss along waveguide modes and cutoffs

Uniformity is very stringent:

Laser Undulator Issues:

Readily available laser technology? Efficient path to longer periods? Better than OPO/OPA? Ripples ok?

A grating based undulator can produce an intermediate-period device

Plettner and Byer, Phys. Rev. ST Accel. Beams 11, 030704 (2008)

Barriers:

Smith Purcell parasitic radiation Attosecond pulses and synchronization Low fields?

Period limit? (300µm)

Beam powered devices have also been considered: Image charge undulator (Wakefield)

A resonant optical structure might make a good undulator

The MAP structure consists of a diffractive optic coupling structure and a partial reflector **resonator**

Tuning: control "matching" layer (b-a).

A MAP-based **undulator** structure has been designed

E

The equations of motion are simple, and are a series of alternating deflections

The fields (TEM) in the gap:

$$E_{y} = \frac{E_{m}}{2} \left[\exp(-jk_{z}z) - \exp(jk_{z}z) \right] \exp(j\omega t - \phi) \quad (1)$$

$$H_{x} = \frac{E_{m}}{2\eta} \mu \left[\exp(-jk_{z}z) + \exp(jk_{z}z) \right] \exp(j\omega t - \phi) \quad (2)$$
co and counter propagating waves

The equations of motion are simple, and are a series of alternating deflections

The fields (TEM) in the gap:

$$E_{y} = \frac{E_{m}}{2} \left[\exp(-jk_{z}z) - \exp(jk_{z}z) \right] \exp(j\omega t - \phi) \quad (1)$$

$$H_{x} = \frac{E_{m}}{2\eta} \mu \left[\exp(-jk_{z}z) + \exp(jk_{z}z) \right] \exp(j\omega t - \phi) \quad (2)$$
co and counterpropagating waves

$$F_E(t) = qE_y = q\frac{E_m}{2} \left[\exp(-jk_z ct) - \exp(jk_z ct)\right] \exp(j\omega t - \phi)$$

$$F_B(t) = qv\mu_0 H_x = qv\frac{E_m}{2} \left[\exp(-jk_z ct) - \exp(jk_z ct)\right] \exp(j\omega t - \phi)$$

where:

$$k_z=\omega/c$$
 $\eta=\sqrt{\mu_0/arepsilon_0}$

bunch length << laser wavelength

At the peak phase, the deflection forces simplify

$$F_E(t) = q \frac{E_m}{2} \left[1 - \exp(2j\omega t) \right]$$
$$F_B(t) \approx q \frac{E_m}{2} \left[1 + \exp(2j\omega t) \right]$$

Thus:

$$F_y(t) = F_E + F_B = qE_m \qquad \phi = \pi/2$$

$$F_y(t) = -qE_m$$
 $\phi = 3\pi/2$
Also:
 $A_u = 2n\lambda_{\rm EM}$ $K = rac{F\lambda_u}{2\pi mc^2}$

The trajectory is straightforward and limited by the structure walls (and the FEL function)

Good mode quality has been found

 $\phi = \pi/2$

Good mode quality has been found

 $\phi = 0$

Good mode quality has been found

$$\phi = 3\pi/2$$

...but phase flips are hard

These optical undulator structures may only work in two regimes

1 optical period

Even mode

Very low undulator parameter

Still a resonator

> 20 optical period

Odd mode

Requires Phase Flip

Low undulator parameter

Resonator might have issues between half periods

two color operation is a possible solution

A soft x-ray light source powered entirely by lasers and on a laptop scale seems possible

Parameter	Value	Alt. Value	
Wavelength	6 nm		
Beam energy	50 MeV	75 MeV	
Emittance (norm.)	<mark>0.06 µm</mark> (doh!)		
Current	2000 A		
Charge	160 fC (whew! ~10 ⁶ e ⁻)		
Undulator parameter	0.11	0.23	
Undulator period	120 µm	250 µm	
Saturation length	125 mm	105 mm	

It is possible to have an all-laser-powered hard xray source using optical accelerator structures...

... but compromises must be made

The quantum regime of the FEL has positive implications for the spectrum; negative for the flux

Photon energy: $\hbar\omega$ Beam energy: EFEL bandwidth: $\Delta\omega/\omega \sim \rho$

When the recoil energy loss is greater than the FEL bandwidth, the quantum regime dominates and the emission spectral bandwidth is very narrow

 $\hbar\omega / E > \Delta\omega / \omega \sim \rho$

A hard x-ray light source powered entirely by lasers and on a laptop scale might be a conventional FEL

Parameter	Value	
FEL Wavelength	~1 Å	
Beam energy	~110 MeV	
Emittance (norm.)	0.01 µm	
Current	2000 A	
Charge	1 fC (whew! ~10 ⁴ e⁻)	
FEL Parameter (p)	10 -4	
Undulator parameter	2 x 10 ⁻²	
Undulator period	10 µm	
Saturation length	~5 cm	

A **γ**-ray light source powered entirely by lasers and on a laptop scale will be a **Quantum FEL**

Parameter	Optical Und.	Conventional	
FEL Wavelength	~0.1 Å		
Beam energy	10s MeV	100s MeV	
Emittance (norm.)	0.06 µm		
Current	2000 A		
Charge	1 fC (whew! ~10 ⁴ e ⁻)		
FEL Parameter (p)	10 ⁻⁵	10 -3	
Undulator parameter	10 -3	~1	
Undulator period	1-20 µm	1 cm	
Saturation length	~10 cm	~1 m	

because $\hbar \omega / E \approx 6 \times 10^{-4}$ one photon emitted recoils > FEL bandwidth, ρ Dielectric Laser Accelerators are becoming a reality. Optical-scale undulators should follow.

